Approximate universality at a first-order transition-the three-state Potts model in (3+1) dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 275789
(http://iopscience.iop.org/0305-4470/27/17/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:11

Please note that terms and conditions apply.

# Approximate universality at a first-order transitionthe three-state Potts model in (3+1) dimensions 

Zheng Weihong $\dagger$, C J Hamer $\ddagger$ and J Oitmaa§<br>School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia

Received 2 June 1994


#### Abstract

Both 'high-' and 'low-temperature' perturbation series are used to locate and characterize the first-order transition in the three-state Potts model in ( $3+1$ ) dimensions on the simple-cubic, body-centred cubic and face-centred cubic lattices. Estimates are presented for the vacuum energy, 'latent heat', magnetization, susceptibility and mass gap at the transition. The results show a remarkable degree of universality between the different lattices, and a law of corresponding states' is followed very closely.


## 1. Introduction

The model discussed in this work is the three-state Potts model in ( $3+1$ ) dimensions, the quantum Hamiltonian equivalent of the normal Euclidean Potts model in four dimensions. As part of a programme of series investigations, we have carried out both 'high-' and 'lowtemperature' expansions for the ground-state energy, the mass gaps, the susceptibility and the magnetization for the model. These are analysed in order to study the nature of the phase transition.

The order of the phase transition for this model is not in doubt. Aharony and Pytte (1981) performed a renormalization-group analysis of the Potts model in (and near) four dimensions, and showed that the transition is first-order for the $p$-state model if $p>2$. Our results provide very clear confirmation of this prediction. Having both high- and lowtemperature expansions at hand, one can extrapolate towards the transition from both sides simultaneously, and thus deduce with high accuracy the location of the transition point, and the discontinuities that occur there. These calculations are performed for three different lattices, namely the simple cubic (SC), the body-centred cubic (BCC) and the face-centred cubic (FCC).

The most interesting feature of the results is a remarkable degree of universality between the results for the different lattices. The discontinuity in the magnetization at the transition point, for instance, is the same for all three lattices, to within an accuracy of a couple of percent. When plotted against the reduced 'temperature' variable, the magnetizations for all three lattices fall on a universal curve; in other words, they obey a 'law of corresponding states'. Other observables such as the mass gaps and susceptibility display a similar behaviour, at a somewhat lesser level of accuracy. The same universal behaviour has also been observed in the (2+1)-dimensional version of the model (Hamer et al 1992).

[^0]Universality is normally expected to be a characteristic of second-order, rather than firstorder transitions. It is understood via renormalization-group theory on the basis that the correlation length near the critical point becomes very large compared to the lattice spacing, so that microscopic details of the system become unimportant. As we argued previously (Hamer et al 1992), the same argument can apply at a first-order transition, provided it is only 'weakly' first-order, i.e. the correlation length is sufficiently large. One must presume that in this case the universality is only approximate. The results are nevertheless very striking, in the present case.

## 2. Method

The 'high-temperature' (HT) form of the Hamiltonian for this model is

$$
\begin{equation*}
H=-2 \sum_{i} \cos \left(\frac{2 \pi}{3} L_{i}\right)-\lambda \sum_{\langle i j\rangle}\left(R_{i}^{+} R_{j}^{-}+R_{i}^{-} R_{j}^{+}\right) \tag{2.1}
\end{equation*}
$$

where $i$ labels the sites on a three-dimensional spatial lattice, $\langle i j\rangle$ denotes nearest-neighbour pairs of sites, and $\lambda$ is the coupling (corresponding to the inverse temperature in the Euclidean formulation). If $\lambda$ is very large, then the model can be described by a 'lowtemperature' (LT) form of the Hamiltonian

$$
\begin{equation*}
\not H^{\prime}=-2 \sum_{\langle i j\rangle} \cos \left[\frac{2}{3} \pi\left(L_{i}-L_{j}\right)\right]-\lambda^{\prime} \sum_{i}\left(R_{i}^{+}+R_{i}^{-}\right) \tag{2.2}
\end{equation*}
$$

where in both cases $L_{i}, R_{i}^{ \pm}$are operators at each site which in a basis of eigenstates of $L_{i}$ obey the rules:

$$
\begin{equation*}
L_{i}\left|l_{i}\right\rangle=l_{t}\left|l_{i}\right\rangle \quad l_{i}=0,1,2 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i}^{ \pm}\left|l_{i}\right\rangle=\left|\left(l_{i} \pm 1\right) \bmod 3\right\rangle \tag{2.4}
\end{equation*}
$$

so that $R_{i}^{ \pm}$are raising and lowering operators for the spin $l_{i}$, modulo 3 . The two versions of the Hamiltonian are related by

$$
\begin{equation*}
H(\lambda)=\frac{1}{\lambda^{\prime}} H^{\prime}\left(\lambda^{\prime}\right) \quad \lambda=1 / \lambda^{\prime} \tag{2,5}
\end{equation*}
$$

Using the linked-cluster series-expansion method (Nickel 1980, He et al 1990, Hamer et al 1992), both 'high-temperature' series in $\lambda$ and 'low-temperature' series in $\lambda^{\prime}$ have been calculated for the ground-state energy, the mass gap, the magnetization, and the susceptibility of the model for SC, BCC and FCC lattices. In these calculations, the first term in (2.1) and (2.2) is taken as the unperturbed Hamiltonian, diagonal in the basis of eigenvectors of $L_{i}$, while the second term then acts as a perturbation, which 'flips' the spin at site $i$ for the low-temperature expansion, or on neighbouring pairs of sites $\langle i j\rangle$ for the high-temperature expansion.

To calculate the susceptibility in the high-temperature expansion, we need to add a magnetic term

$$
\begin{equation*}
H_{\mathrm{M}}=h \sum_{i}\left(R_{i}^{+}+R_{i}^{-}\right) / 2 \tag{2.6}
\end{equation*}
$$

to the Hamiltonian (2.1), and then the susceptibility is defined as

$$
\begin{equation*}
\chi=-\left.\frac{1}{N} \frac{\partial^{2} E_{0}(h, \lambda)}{\partial^{2} h}\right|_{h=0} \tag{2.7}
\end{equation*}
$$

where $N$ is the number of lattice sites.
For the low-temperature expansion, the magnetic field term to be added to the Hamiltonian (2.2) is taken as

$$
\begin{equation*}
H_{\mathrm{M}}^{\prime}=h^{\prime} \sum_{i} \cos \left(\frac{2}{3} \pi L_{i}\right) \tag{2.8}
\end{equation*}
$$

and the spontaneous magnetization and susceptibility are defined as:

$$
\begin{equation*}
M_{0}^{\prime}=\left.\frac{1}{N} \frac{\partial E_{0}^{\prime}\left(h^{\prime}, \lambda^{\prime}\right)}{\partial h^{\prime}}\right|_{h^{\prime}=0} \quad \chi^{\prime}=-\left.\frac{1}{N} \frac{\partial^{2} E_{0}^{\prime}\left(h^{\prime}, \lambda^{\prime}\right)}{\partial^{2} h^{\prime}}\right|_{h^{\prime}=0} \tag{2.9}
\end{equation*}
$$

There are two sectors of excited states in the model, symmetric and antisymmetric, respectively, under a spin-parity transformation. The lowest excited state in each sector is a single site excitation, in both the HT and LT phases. In the high-temperature series expansion the two states have the same eigenvalues $F^{\mathrm{S}}$ and $F^{\mathrm{A}}$, but in the low-temperature expansion the two states differ, except in the limit of $\lambda^{\prime}=0$.

The relations between the high- and low-temperature observables are, respectively,

$$
\begin{align*}
& E_{0}(\lambda)=\frac{1}{\lambda^{\prime}} E_{0}^{\prime}\left(\lambda^{\prime}\right)  \tag{2.10}\\
& \chi(\lambda)=\lambda^{\prime} \chi^{\prime}\left(\lambda^{\prime}\right)  \tag{2.11}\\
& F^{S, A}(\lambda)=\frac{1}{\lambda^{\prime}} F^{S, A}\left(\lambda^{\prime}\right) \tag{2.12}
\end{align*}
$$

with $\lambda=1 / \lambda^{\prime}$.
Series have been calculated for the ground-state energy per site $E_{0} / N$, the magnetization $M_{0}$, the susceptibility $\chi$, and the symmetric and antisymmetric lowest-lying excited state eigenvalues $F^{\mathrm{S}}, F^{\mathrm{A}}$ on the SC, BCC and FCC lattices. The perturbation series for each quantity was calculated using the linked-cluster expansion method, reviewed by He et al (1990). For the calculation of the ground-state energy, a list of all connected clusters up to a certain order are needed, while for the calculation of the mass gap, both connected and disconnected clusters are needed. Table 1 gives the number of clusters generated for each lattice. Tables 2-4 give the resulting series coefficients in the 'high-' and 'low-temperature' regimes.

Table 1. The number of clusters generated for each lattice. Here $n v$ is the number of sites (vertices), and $n b$ is the number of bonds (edges).

|  |  | Ground-state energy |  |  | Mass gap |  |
| :--- | :--- | :--- | :---: | :--- | :---: | :---: |
| Lattice | Expansion | Order | No of clusters |  | Order |  |
| No of clusters | N |  |  |  |  |  |
| SC | HT | $n b=10$ | 824 | $n b=10$ | 2662 |  |
| SC | LT | $n v=10$ | 1050 | $n v=9$ | 717 |  |
| BCC | HT | $n b=10$ | 955 | $n b=10$ | 3036 |  |
| BCC | LT | $n v=10$ | 2647 | $n v=9$ | 1208 |  |
| FCC | HT | $n b=10$ | 2575 | $n b=10$ | 5412 |  |
| FCC | LT | $n v=9$ | 7215 | $n v=7$ | 497 |  |

## 3. Series analysis

The series are analysed in the same way as in our previous paper (Hamer et al 1992). Firstly, we have calculated standard Dlog Padé approximants and confluent differential

Table 2. High-temperature series in $\lambda$ for the ground-state energy per site $E_{0} / N$, the susceptibility $\chi$, and the energy gap $F$. Coefficients of $\lambda^{\prime \prime}$ are listed.

| $n$ | $E_{0} / N$ | $\chi$ | $F$ |
| :---: | :---: | :---: | :---: |
| Sc lattice |  |  |  |
| 0 | -2 | $\frac{1}{3}$ | 3 |
| 1 | 0 | $\frac{4}{3}$ | -6 |
| 2 | -1.000 000000000 | 5.222222222222 | -7.000000000000 |
| 3 | $-1.666666666667 \times 10^{-1}$ | $2.022222222222 \times 10^{1}$ | -5.833333333333 |
| 4 | $-8.981481481481 \times 10^{-1}$ | $7.943552812071 \times 10^{1}$ | $-4.617592592593 \times 10^{1}$ |
| 5 | -8.389 $917695473 \times 10^{-1}$ | $3.103366928314 \times 10^{2}$ | 2.365226337449 |
| 6 | -3.340 577846365 | $1.223701032701 \times 10^{3}$ | -6.031975308642 $\times 10^{2}$ |
| 7 | -5.638 850784941 | $4.815699910857 \times 10^{3}$ | $9.306210665612 \times 10^{2}$ |
| 8 | -2.031 $457327592 \times 10^{1}$ | $1.905170031724 \times 10^{4}$ | $-1.071616527727 \times 10^{4}$ |
| 9 | $-4.573804931437 \times 10^{1}$ | $7.533772271283 \times 10^{4}$ | $3.151993522458 \times 10^{4}$ |
| 10 | $-1.587276625348 \times 10^{2}$ | $2.988695129945 \times 10^{5}$ | $-2.311414620311 \times 10^{5}$ |
| Bcc lattice |  |  |  |
| 0 | -2 | $\frac{1}{3}$ | 3 |
| 1 | 0 | $\frac{16}{9}$ | $-8$ |
| 2 | -1.333 333333333 | 9.333333333333 | $-1.200000000000 \times 10^{1}$ |
| 3 | -2.222 $222222222 \times 10^{-1}$ | $4.869135802469 \times 10^{1}$ | $-1.800000000000 \times 10^{1}$ |
| 4 | -2.876543209 877 | $2.580475537266 \times 10^{2}$ | $-1.512469135802 \times 10^{2}$ |
| 5 | -2.825 102880658 | $1.361559967146 \times 10^{3}$ | $-3.196159122085 \times 10^{1}$ |
| 6 | $-1.946843087944 \times 10^{1}$ | $7.254552553547 \times 10^{3}$ | $-3.596040656912 \times 10^{3}$ |
| 7 | $-3.751299767989 \times 10^{1}$ | $3.857533398110 \times 10^{4}$ | $6.806522608342 \times 10^{3}$ |
| 8 | $-2.128585763959 \times 10^{2}$ | $2.063374574071 \times 10^{5}$ | $-1.179695462372 \times 10^{5}$ |
| 9 | $-5.778013647783 \times 10^{2}$ | $1.102935928829 \times 10^{6}$ | $4.613535500834 \times 10^{5}$ |
| 10 | $-3.008315976972 \times 10^{3}$ | $5.917649543065 \times 10^{6}$ | $-4.744191435498 \times 10^{6}$ |
| FCC lattice |  |  |  |
| 0 | -2 | $\frac{1}{3}$ | 3 |
| 1 | 0 | $\frac{8}{3}$ | -12 |
| 2 | -2.000 000000000 | $2.111111111111 \times 10^{1}$ | $-2.600000000000 \times 10^{1}$ |
| 3 | -3.000 000000000 | $1.680000000000 \times 10^{2}$ | $-9.500000000000 \times 10^{\text {L }}$ |
| 4 | -9.759 259259259 | $1.343645404664 \times 10^{3}$ | $-5.225000000000 \times 10^{2}$ |
| 5 | $-3.831584362140 \times 10^{1}$ | $1.079220780623 \times 10^{4}$ | $-2.943771604938 \times 10^{3}$ |
| 6 | $-1.771601794696 \times 10^{2}$ | $8.698374416855 \times 10^{4}$ | $-1.894166706676 \times 10^{4}$ |
| 7 | $-9.016458238073 \times 10^{2}$ | $7.030865138995 \times 10^{5}$ | $-1.226742463198 \times 10^{5}$ |
| 8 | $-4.928367755668 \times 10^{3}$ | $5.696701673531 \times 10^{6}$ | $-8.451015776007 \times 10^{5}$ |
| 9 | $-2.840995631321 \times 10^{4}$ | $4.625170576728 \times 10^{7}$ | $-5.863270819922 \times 10^{6}$ |
| 10 | $-1.707282143449 \times 10^{5}$ | $3.761831987155 \times 10^{8}$ | $-3.513639754349 \times 10^{7}$ |

approximants (Guttmann 1989) to the series for the derivative of the ground-state energy per site, the magnetization, susceptibility, and mass gap, as for a model with a normal second-order phase transition. The results are exhibited in table 5. From this table, as in the case of $(2+1)$-dimensions, it can be seen that the apparent second-order critical points derived from the magnetization, susceptibility, and mass-gap series are in good agreement with one another in every case, so we assume henceforth that they are the same for each different quantity. However, the critical points derived from the HT and LT series, $\lambda_{c} \mathrm{H}$ and $\lambda_{c}^{\mathrm{L}}$, respectively, 'cross over' each other by a small but significant amount, which is several times bigger than our expected errors. If the transition were really second-order, the two results should agree. This provides the first signal that the system actually undergoes a firstorder transition, located somewhere in between the two pseudo-critical points $\lambda_{c}^{\mathrm{H}}$ and $\lambda_{\mathrm{c}}^{\mathrm{L}}$.

Table 3. Low-temperature series in $\lambda^{\prime}$ for the ground-state energy per site $E_{0}^{\prime} / N$, the spontaneous magnetization $M_{0}^{\prime}$, the susceptibility $\chi^{\prime}$, and the symmetric energy gap $F^{\prime}$. Coefficients of $\lambda^{\prime n}$ are listed.

| $n$ | $E_{0}^{\prime} / N$ | $M_{0}^{\prime}$ | $x^{\prime}$ | $F^{\text {S }}$ |
| :---: | :---: | :---: | :---: | :---: |
| SC lattice |  |  |  |  |
| 0 | -6 | 1 | 0 | 18 |
| 1 | 0 | 0 | 0 | -1 |
| 2 | -1.111111111111 $\times 10^{-1}$ | -9.259 $259259259 \times 10^{-3}$ | $1.543209876543 \times 10^{-3}$ | -2.444444 $444444 \times 10^{-1}$ |
| 3 | -6.172839 $506173 \times 10^{-3}$ | $-1.028806584362 \times 10^{-3}$ | $2.572016460905 \times 10^{-4}$ | -4.358024691358×10-2 |
| 4 | -2.556428482354×10-4 | $-1.220680429435 \times 10^{-4}$ | $6.170451925987 \times 10^{-5}$ | $-6.092405536850 \times 10^{-4}$ |
| 5 | -4.191434232586×10-5 | $-2.768886856678 \times 10^{-9}$ | $1.770986807567 \times 10^{-5}$ | $5.089734796525 \times 10^{-4}$ |
| 6 | $-6.011025192033 \times 10^{-6}$ | -4.747607446829 $\times 10^{-6}$ | $3.841457261053 \times 10^{-6}$ | -9.912953 $208087 \times 10^{-5}$ |
| 7 | $-6.948480357121 \times 10^{-7}$ | $-8.211481846745 \times 10^{-7}$ | $8.834544897968 \times 10^{-7}$ | -5016967814166×10 $0^{-5}$ |
| 8 | $-1.196782824050 \times 10^{-7}$ | $-1.690780384120 \times 10^{-7}$ | $2,139141521777 \times 10^{-7}$ | $-1.002917757395 \times 10^{-5}$ |
| 9 | $-2.141254688487 \times 10^{-8}$ | $-3.403005832857 \times 10^{-8}$ | $4.999414633801 \times 10^{-8}$ | $1.108362181717 \times 10^{-6}$ |
| 10 | $-3.687509073179 \times 10^{-9}$ | $-6.921346442452 \times 10^{-9}$ | $1.179976787143 \times 10^{-8}$ | $4.780193020099 \times 10^{-7}$ |
| 11 | $-6.778125003024 \times 10^{-10}$ | $-1.445281092932 \times 10^{-9}$ | $2.784060734643 \times 10^{-9}$ | $-1.945229363945 \times 10^{-8}$ |
| 12 | $-1.251673004394 \times 10^{-10}$ | $-3.004751926492 \times 10^{-10}$ | $6.504686032228 \times 10^{-10}$ | $-4.571257127331 \times 10^{-8}$ |
| 13 | $-2.357367070939 \times 10^{-11}$ | $-6.343809181457 \times 10^{-11}$ | $1.528491161854 \times 10^{-10}$ | $-6.765939615858 \times 10^{-9}$ |
| 14 | $-4.635916254394 \times 10^{-12}$ | $-1.364258348655 \times 10^{-11}$ | $3.605485935190 \times 10^{-11}$ | $1.482429783084 \times 10^{-9}$ |
| 15 | $-9.225229574984 \times 10^{-13}$ | $-2.947845552935 \times 10^{-12}$ | $8.494403226235 \times 10^{-12}$ | $6.077104103456 \times 10^{-10}$ |
| 16 | $-1.843786072533 \times 10^{-13}$ | $-6.397133883497 \times 10^{-13}$ | $2.000921892612 \times 10^{-12}$ | $-2.721973067010 \times 10^{-11}$ |
| 17 | $-3.725969289577 \times 10^{-14}$ | $-1.395843195160 \times 10^{-13}$ | $4.713078687905 \times 10^{-13}$ | $-4.935736693247 \times 10^{-11}$ |
| 18 | $-7.609606215014 \times 10^{-15}$ | $-3060948051571 \times 10^{-14}$ | $1.110412442686 \times 10^{-13}$ |  |
| 19 | $-1.570704085807 \times 10^{-15}$ | $-6.748881949784 \times 10^{-15}$ | $2.618288700630 \times 10^{-14}$ |  |
| 20 | -3.271 $173741747 \times 10^{-16}$ | $-1.494572839100 \times 10^{-15}$ | $6.176147442 .054 \times 10^{-15}$ |  |
| 21 | $-6.853248480703 \times 10^{-17}$ | $-3.320263557927 \times 10^{-16}$ | $1.456922692516 \times 10^{-15}$ |  |
| BCC latice |  |  |  |  |
| 0 | -8 | 1 | 0 | 24 |
| 1 | 0 | 0 | 0 | -1 |
| 2 | -8.333333333 $333 \times 10^{-2}$ | $-5.208333333333 \times 10^{-3}$ | $6.510416666667 \times 10^{-4}$ | $-1.507936507937 \times 10^{-1}$ |
| 3 | $-3.472222222222 \times 10^{-3}$ | $-4.340277777778 \times 10^{-4}$ | $8138020833333 \times 10^{-5}$ | -2.114827412446×10-2 |
| 4 | -9.782848 $324515 \times 10^{-5}$ | $-3.529715319770 \times 10^{-5}$ | $1.331663123895 \times 10^{-5}$ | $-4.346591494645 \times 10^{-4}$ |
| 5 | $-1.119516093474 \times 10^{-5}$ | $-5.751360150542 \times 10^{-6}$ | $2.772702608863 \times 10^{-6}$ | $4.178823183897 \times 10^{-5}$ |
| 6 | $-1.222321004630 \times 10^{-6}$ | $-7.283797024595 \times 10^{-7}$ | $4.390198857270 \times 10^{-7}$ | -2.032601 $379581 \times 10^{-5}$ |
| 7 | $-1.026091107415 \times 10^{-7}$ | $-9.098477519633 \times 10^{-8}$ | $7.280520513400 \times 10^{-8}$ | $-5.735082941307 \times 10^{-6}$ |
| 8 | $-1.289252768835 \times 10^{-8}$ | $-1.368521685986 \times 10^{-8}$ | $1.286685179205 \times 10^{-8}$ | $-8.575020534183 \times 10^{-7}$ |
| 9 | $-1.727550934237 \times 10^{-9}$ | $-2,032814027219 \times 10^{-9}$ | 2,204496244978 $\times 10^{-9}$ | $1.592510613274 \times 10^{-8}$ |
| 10 | $-2.209920093330 \times 10^{-10}$ | -3.041 $228635574 \times 10^{-10}$ | $3.811360802420 \times 10^{-10}$ | $1.132210500806 \times 10^{-8}$ |
| 11 | -2993811666934×10-11 | $-4.667813357152 \times 10^{-11}$ | $6.595267929160 \times 10^{-11}$ | $-6.277793857060 \times 10^{-10}$ |
| 12 | $-4.078772532507 \times 10^{-12}$ | -7.138925397 $155 \times 10^{-12}$ | $1.130888729648 \times 10^{-11}$ | $-7.385158640199 \times 10^{-10}$ |
| 13 | $-5.661157507143 \times 10^{-13}$ | $-1.107818692739 \times 10^{-12}$ | $1.949704539693 \times 10^{-12}$ | $-8.962012572575 \times 10^{-11}$ |
| 14 | -8.178362485030 $\times 10^{-14}$ | $-1.748889351242 \times 10^{-13}$ | $3.372661671175 \times 10^{-13}$ | $5.640421374971 \times 10^{-12}$ |
| 15 | $-1.194572363559 \times 10^{-14}$ | $-2.773109973200 \times 10^{-14}$ | $5.826464647715 \times 10^{-14}$ | $2.588496912292 \times 10^{-12}$ |
| 16 | -1.754214611880×10-15 | $-4.417818701387 \times 10^{-15}$ | $1.006660631544 \times 10^{-14}$ | $-8.677815036271 \times 10^{-14}$ |
| 17 | -2.606405 $330562 \times 10^{-16}$ | $-7.078522796723 \times 10^{-16}$ | $1.739499169217 \times 10^{-15}$ | $-1.157685975097 \times 10^{-13}$ |
| 18 | $-3.913469658937 \times 10^{-17}$ | $-1.139856248161 \times 10^{-16}$ | $3.006789181458 \times 10^{-16}$ |  |
| 19 | $-5.937191246550 \times 10^{-18}$ | $-1.845429149667 \times 10^{-17}$ | $5.201875312327 \times 10^{-17}$ |  |
| 20 | $-9.087021610971 \times 10^{-19}$ | $-3.000913323807 \times 10^{-18}$ | $9.003489058979 \times 10^{-18}$ |  |
| 21 | $-1.399166345334 \times 10^{-19}$ | $-4.895644363149 \times 10^{-19}$ | $1.558556739939 \times 10^{-18}$ |  |

Next, we have used a first-order inhomogeneous differential approximant (Guttmann 1989) to extrapolate both the high- and low-temperature series to the transition point, starting from the high- and low-temperature limits, respectively.

Figure 1 show the results for the ground-state energy per site. It can be seen that the high- and low-temperature extrapolations cross each other at a distinct angle, which is again characteristic of a first-order transition. The transition point where the two lines cross is

Table 3. Continued.

| $n$ | $E_{0}^{\prime} / N$ | $M_{6}^{\prime}$ | $x^{\prime}$ | $F^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| FCC lattice |  |  |  |  |
| 0 | -12 | 1 | 0 | 36 |
| 1 | 0 | 0 | 0 | -1 |
| 2 | $-5.555555555556 \times 10^{-2}$ | $-2.314814814815 \times 10^{-3}$ | $1.929012345679 \times 10^{-4}$ | $-8.282828282828 \times 10^{-2}$ |
| 3 | $-1.543209876543 \times 10^{-3}$ | $-1.286008230453 \times 10^{-4}$ | $1.607510288066 \times 10^{-5}$ | $-8.141006019794 \times 10^{-3}$ |
| 4 | $-2.626235516735 \times 10^{-5}$ | $-6.380834814231 \times 10^{-6}$ | $1.599439036078 \times 10^{-6}$ | $-2.538647992728 \times 10^{-4}$ |
| 5 | $-1.840247467819 \times 10^{-6}$ | $-6.609801510974 \times 10^{-7}$ | $2.141947953736 \times 10^{-7}$ | $-2.100808824929 \times 10^{-5}$ |
| 6 | $-1.422170212807 \times 10^{-7}$ | $-5.685389662316 \times 10^{-8}$ | $2.273965448599 \times 10^{-8}$ | $-2.684816122705 \times 10^{-6}$ |
| 7 | $-8.585559477659 \times 10^{-9}$ | $-4.864809102635 \times 10^{-9}$ | $2.537202330097 \times 10^{-9}$ | $-1.625890790776 \times 10^{-7}$ |
| 8 | $-7.155787647254 \times 10^{-6}$ | $-4.834471244440 \times 10^{-10}$ | $2.956861967921 \times 10^{-10}$ | $-1.961534388598 \times 10^{-8}$ |
| 9 | $-6.045796454435 \times 10^{-11}$ | $-4.645133168797 \times 10^{-11}$ | $3.301732513878 \times 10^{-11}$ | $-1.601681712471 \times 10^{-9}$ |
| 10 | $-4960683287853 \times 10^{-12}$ | $-4.523890287125 \times 10^{-12}$ | $3.734126348431 \times 10^{-12}$ | $-1.829770341440 \times 10^{-10}$ |
| 11 | $-4455387247787 \times 10^{-13}$ | $-4.581547740962 \times 10^{-13}$ | $4.255855904068 \times 10^{-13}$ | $-1.507626560856 \times 10^{-11}$ |
| 12 | $-4.054811081451 \times 10^{-14}$ | $-4636219335754 \times 10^{-14}$ | $4.811926457938 \times 10^{-14}$ | $-1.861399925108 \times 10^{-12}$ |
| 13 | $-3.718146662083 \times 10^{-15}$ | $-4.739792191524 \times 10^{-15}$ | $5.459429241490 \times 10^{-15}$ | $-1.566561703981 \times 10^{-13}$ |
| 14 | $-3.516589112827 \times 10^{-16}$ | $-4.912685789617 \times 10^{-16}$ | $6.204930758576 \times 10^{-16}$ |  |
| 15 | $-3.364743646828 \times 10^{-17}$ | $-5.115218358742 \times 10^{-17}$ | $7.043584708835 \times 10^{-17}$ |  |
| 16 | $-3.252676903047 \times 10^{-18}$ | $-5.361749527332 \times 10^{-18}$ | $8.004406573027 \times 10^{-18}$ |  |
| 17 | $-3.189008286853 \times 10^{-19}$ | $-5.657995418076 \times 10^{-19}$ | $9.101883983774 \times 10^{-19}$ |  |
| 18 | $-3.154936332323 \times 10^{-20}$ | $-5.997094989293 \times 10^{-20}$ | $1.035049331350 \times 10^{-19}$ |  |
| 19 | $-3.147413798576 \times 10^{-21}$ | $-6.386022364424 \times 10^{-21}$ | $1.177689557883 \times 10^{-20}$ |  |

Table 4. Low-temperature series in $\lambda^{\prime}$ for the the antisymmetric energy gap $F^{\prime A}$. Coefficients of $\lambda^{m}$ are listed for SC, BCC and FCC lattices.

| $n$ | SC | BCC | FCC |
| :--- | :--- | :--- | :--- |
| 0 | 18 | 24 | 36 |
| 1 | 1 | 1 | 1 |
| 2 | $-2.222222222222 \times 10^{-1}$ | $-1.388888888889 \times 10^{-1}$ | $-7.777777777778 \times 10^{-2}$ |
| 3 | $-4.012345679012 \times 10^{-2}$ | $-1.813271604938 \times 10^{-2}$ | $-6.604938271605 \times 10^{-3}$ |
| 4 | $-2.162052625016 \times 10^{-3}$ | $-8.315833257963 \times 10^{-4}$ | $-2.869177551142 \times 10^{-4}$ |
| 5 | $-6.239521414419 \times 10^{-5}$ | $-6.415565708583 \times 10^{-5}$ | $-2.765258584095 \times 10^{-5}$ |
| 6 | $-5.843750745313 \times 10^{-5}$ | $-1.590500146691 \times 10^{-5}$ | $-2.647079425129 \times 10^{-6}$ |
| 7 | $-2.915056618858 \times 10^{-5}$ | $-3.669510359450 \times 10^{-6}$ | $-2.158856562623 \times 10^{-7}$ |
| 8 | $-7.100136853245 \times 10^{-6}$ | $-6.022304202888 \times 10^{-7}$ | $-2.101101145780 \times 10^{-8}$ |
| 9 | $-7.132993913832 \times 10^{-7}$ | $-6.057897577185 \times 10^{-6}$ | $-2.078770069957 \times 10^{-9}$ |
| 10 | $3.683100118840 \times 10^{-8}$ | $-4.578878965521 \times 10^{-9}$ | $-2.007727365188 \times 10^{-10}$ |
| 11 | $6.130499801574 \times 10^{-10}$ | $-8.777724370899 \times 10^{-10}$ | $-2.029289101115 \times 10^{-11}$ |
| 12 | $-1.007235768774 \times 10^{-8}$ | $-2.485091393533 \times 10^{-10}$ | $-2.075072396612 \times 10^{-12}$ |
| 13 | $-3.468909272944 \times 10^{-9}$ | $-4.678438563202 \times 10^{-11}$ | $-2.123157845438 \times 10^{-13}$ |
| 14 | $-4.458181235969 \times 10^{-10}$ | $-5.707898751330 \times 10^{-12}$ |  |
| 15 | $2.205994697882 \times 10^{-11}$ | $-5.358262683666 \times 10^{-13}$ |  |
| 16 | $8.960752120726 \times 10^{-12}$ | $-8.320342229591 \times 10^{-14}$ |  |
| 17 | $-3.619958517938 \times 10^{-12}$ | $-2.179543431286 \times 10^{-14}$ |  |

found to be

$$
\begin{align*}
& \lambda_{c}=0.2403(2) \quad(\mathrm{SC} \text { lattice }) \\
& \lambda_{\mathrm{c}}=0.17655(20)(\mathrm{BCC} \text { lattice })  \tag{3,1}\\
& \lambda_{\mathrm{c}}=0.1162(1) \quad(\text { FCC lattice }) .
\end{align*}
$$

These lie neatly in between the pseudo-critical points $\lambda_{c}^{H}$ and $\lambda_{c}^{L}$ listed in table 5. The

Table 5. Estimates of singularity parameters for the pseudo second-order phase transitions, obtained by Dlog Padé approximants and confluent differential approximants to the series given in tables 2, 3 and 4.

| Quantity | нт |  | Lr |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\lambda_{c}^{\text {H }}$ | Index | $\lambda_{\text {c }}^{L}$ | Index |
| sc lattice |  |  |  |  |
| M |  |  | 0.237(2) | 0.20 (4) |
| $\chi$ | 0.249(3) | -0.86(3) | 0.2369(6) | -0.92(1) |
| $F_{\text {S }}$ | 0.250(4) | 0.47(3) | $0.236(2)$ | 0.47(3) |
| $F_{\text {A }}$ |  |  | 0.237(1) | 0.20 (2) |
| BCC lattice |  |  |  |  |
| M |  |  | $0.172(3)$ | 0.21 (3) |
| x | 0.183(3) | -0.84(5) | 0.173(1) | -0.95(5) |
| $F_{\text {S }}$ | 0.184(4) | 0.48(5) | 0.1730(6) | 0.47(2) |
| $F_{\text {A }}$ |  |  | 0.172(1) | 0.22(2) |
| FCC lattice |  |  |  |  |
| M |  |  | 0.115(3) | 0.20(3) |
| $\chi$ | 0.121(1) | -0.84(5) | 0.114(1) | -0.91(5) |
| $F_{\text {S }}$ | 0.1207(8) | 0.44(3) | 0.1143(5) | 0.44(2) |
| $F_{\text {A }}$ |  |  | 0.114(1) | 0.20 (3) |



Figure 1. Graph of the ground state energy per site $E_{0} / N$ against $\lambda$ for the sc, BCC and FCC lattices. The broken vertical lines mark the expected phase transitions.
remaining functions, namely the magnetization, the susceptibility and the mass gap (and also the derivative of the low-temperature ground-state energy), vary rapidly near the transition point because of the nearby pseudo-critical point. It is useful therefore to 'smooth' each of these functions before making the extrapolations (Liu and Fisher 1989), by calculating approximants to the series for $\left(1-\lambda / \lambda_{c}^{(s)}\right)^{-\nu} f(\lambda)$ rather than $f(\lambda)$ itself, where $\lambda_{c}^{(s)}$ and $\nu$ are the pseudo-critical point and critical index, respectively. The errors arise mainly from the uncertainties in the critical parameters $\lambda_{c}, \lambda_{c}^{(s)}$ and $\nu$ in each case.

The results are as follows.


Figure 2. Graph of the derivative of the ground state energy per site, ( $1 / N$ ) $\partial E_{0} / \partial \lambda$ against $\lambda$ for the SC, BCC and FCC lattices. The broken vertical iines mark the expected phase transitions.

Derivative of the ground-state energy. The derivative shows a substantial discontinuity at the transition point, as illustrated in figure 2

$$
\frac{1}{N} \frac{\mathrm{~d} E_{0}}{\mathrm{~d} \lambda}= \begin{cases}-0.632(4) & \lambda \rightarrow \lambda_{\mathrm{c}}-  \tag{3.2}\\ -1.77(2) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the sc lattice, or

$$
\frac{1}{N} \frac{\mathrm{~d} E_{0}}{\mathrm{~d} \lambda}= \begin{cases}-0.636(8) & \lambda \rightarrow \lambda_{\mathrm{c}}-  \tag{3.3}\\ -2.21(4) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the BCC lattice, or

$$
\frac{1}{N} \frac{\mathrm{~d} E_{0}}{d \lambda}= \begin{cases}-0.781(3) & \lambda \rightarrow \lambda_{\mathrm{c}}-  \tag{3,4}\\ -3.22(2) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the FCC lattice.
Thus we estimate the discontinuity or 'latent heat' as

$$
L \equiv \frac{1}{N}\left(\left.\frac{\partial E_{0}}{\partial \lambda}\right|_{\lambda=\lambda_{c}-}-\left.\frac{\partial E_{0}}{\partial \lambda}\right|_{\lambda=\lambda_{\mathrm{c}}+}\right)= \begin{cases}1.14(2) & \text { (SC lattice) }  \tag{3.5}\\ 1.57(4) & \text { (BCC lattice) } \\ 2.44(2) & \text { (FCC lattice) }\end{cases}
$$

Spontaneous magnetization. The spontaneous magnetization is shown in figure 3. At the transition point, the values are

$$
M_{0}= \begin{cases}0.48(1) & \text { (SC lattice) }  \tag{3.6}\\ 0.48(2) & \text { (BCC lattice) } \\ 0.48(1) & \text { (FCC lattice) }\end{cases}
$$

i.e. about $48 \%$ of the maximum possible value for each lattice. The similarity between these values for all three lattices is very striking, and immediately suggests at least an approximate form of universality. To test this further, we plot the magnetization for all
three lattices against a 'reduced' coupling variable $\lambda / \lambda_{c}$ in figure 4 . It can be seen that the results for all three lattices, while not identical, certainly lie extremely close to one another, so that a 'law of corresponding states' seems to apply.


Figure 3. Graph of the spontaneous magnetization $M_{0}$ against $\lambda^{\prime}$ for the SC, BCC and FCC lattices.


Figure 4. Graph of the spontaneous magnetization $M_{0}$ against the 'reduced' coupling $\lambda^{\prime} / \lambda_{c}^{\prime}$ for the $S C, B C C$ and FCC lattices.

Susceptibility. The data for the susceptibility $\dagger$ are displayed in a similar fashion in figures 5 and 6. Values at the transition point are

$$
\chi= \begin{cases}7.3(10) & \lambda \rightarrow \lambda_{c}-  \tag{3.7}\\ 5.8(15) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the Sc lattice, or

$$
\chi= \begin{cases}6.5(5) & \lambda \rightarrow \lambda_{\mathrm{c}}-  \tag{3.8}\\ 7(2) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the BCC lattice, or
$\dagger$ We take this opportunity of correcting an error in our previous paper (Hamer et al 1992), where a factor 4 was misplaced in the high-temperature series for the susceptibility $\chi$ for the square and triangular lattices, and a factor $\lambda^{\prime}$ was misplaced in the low-temperature series. After correcting these mistakes, the susceptibilities at the transition point are found to be

$$
\chi= \begin{cases}17(4) & \lambda \rightarrow \lambda_{\mathrm{c}}- \\ 21(8) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the square lattice, or

$$
x= \begin{cases}29(4) & \lambda \rightarrow \lambda_{\mathrm{s}}- \\ 16(4) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the triangular lattice.


Figure 5. Graph of the susceptibility $\chi$ against $\lambda$ for the $S C, B C C$ and $F C C$ lattices.


Figure 6. Graph of the susceptibility $\chi$ against the 'reduced' coupling $\lambda / \lambda_{c}$ for the SC, BCC and FCC lattices.

$$
\chi= \begin{cases}6.3(4) & \lambda \rightarrow \lambda_{c}-  \tag{3.9}\\ 5(2) & \lambda \rightarrow \lambda_{c}+\end{cases}
$$

for the FCC lattice.
Again it appears that the behaviour is very close to universal, and an approximate law of corresponding states is obeyed, as illustrated in figure 6.

Mass gaps. The symmetric and anti-symmetric mass gaps are displayed in figures 7 and 8. Values at the transition point are

$$
\begin{align*}
& F^{S}= \begin{cases}0.59(5) & \lambda \rightarrow \lambda_{c}- \\
0.8(2) & \lambda \rightarrow \lambda_{c}+\end{cases} \\
& F^{A}= \begin{cases}0.59(5) & \lambda \rightarrow \lambda_{c}- \\
2.40(15) & \lambda \rightarrow \lambda_{c}+\end{cases} \tag{3.10}
\end{align*}
$$

for the SC lattice, and

$$
\begin{align*}
& F^{\mathrm{S}}= \begin{cases}0.63(4) & \lambda \rightarrow \lambda_{\mathrm{c}}- \\
0.82(8) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases} \\
& F^{\mathrm{A}}= \begin{cases}0.63(4) & \lambda \rightarrow \lambda_{\mathrm{c}}- \\
2.62(12) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases} \tag{3.11}
\end{align*}
$$

for the BCC lattice, and

$$
F^{S}= \begin{cases}0.65(3) & \lambda \rightarrow \lambda_{c}- \\ 0.8(1) & \lambda \rightarrow \lambda_{c}+\end{cases}
$$

$$
F^{\mathrm{A}}= \begin{cases}0.65(3) & \lambda \rightarrow \lambda_{\mathrm{c}}- \\ 2.64(15) & \lambda \rightarrow \lambda_{\mathrm{c}}+\end{cases}
$$

for the FCC lattice.


Figure 7. Graph of the symmetric and antssymmetric mass gap $F^{S}$ and $F^{A}$ against $\lambda$ for the $\mathrm{SC}, \mathrm{BCC}$ and FCC lattices.


Figure 8. Graph of the symmetric and antisymmetric mass gap $F^{\mathrm{S}}$ and $F^{\mathrm{A}}$ against the 'reduced' coupling $\lambda / \lambda_{c}$ for the $S C, B C C$ and $F C C$ lattices.

Once more, there is a striking similarity between these values for the different lattices, and a law of corresponding states is approximately obeyed (figure 8). The mass gap is small but finite at the transition point, as one would expect for a weak first-order transition; and our data indicate that the symmetric mass gap is either continuous, or has only a small discontinuity from the low-temperature to the high-temperature phase. The antisymmetric
mass gap, on the other hand, certainly seems to undergo a substantial discontinuity at the phase transition, as seen in figures 7 and 8.

Is it possible that the symmetric mass gap is really continuous, so that the singularity at the transition is a cusp rather than a finite discontinuity? This is precisely what happens in the $Q$-state Potts model in $(1+1)$ dimension for $Q>4$, where a similar first-order transition occurs. Discussions of the finite-size behaviour of the low-lying energy eigenvalues for this system were given by Igloi and Solyom (1983) and Hamer (1983), for instance. On the other hand, the $(1+1) \mathrm{D}$ model possesses a self-duality property which enforces this continuity, and is not true of the $(3+1) \mathrm{D}$ model; and we certainly know of no general argument why continuity should occur. The values (3.10)-(3.12) nevertheless leave this as an intriguing conjecture. Similarly, the values (3.7)-(3.9) raise the possibility that the susceptibility might also be continuous, with a cusp singularity at the transition point, although we are aware of no good reason why this should be so.

## Acknowledgment

This work forms part of a research project supported by a grant from the Australian Research Council.

## References

Aharony A and Pytte E 1981 Phys. Rev. B 23362
Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13 ed C Domb and J Lebowitz (New York: Academic)
Hamer C J 1983 J. Phys. A: Math. Gen. 163085.
Hamer C J, Oitmaa J and Zheng W H 1992 J. Phys. A: Math. Gen. 251821
He H X, Hamer C J and Oitmaa J 1990 J. Phys. A: Math. Gen. 231775
Igloi F and Solyom J 1983 J. Phys. C: Solid State Phys. 162883
Liu A J and Fisher M E 1989 Physica 156A 35
Nickel B G 1980 unpublished


[^0]:    $\dagger$ E-mail address: w.zheng@unsw.edu.au
    $\ddagger$ E-mail address: c.hamer@unsw.edu.au
    § E-mail address: otja@newt.phys.unsw.edu.au

