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I.  Phys. A: Math. Gen. 27 (1994) 5789-5800. Printed in the UK 

Approximate universality at a first-order transition- 
the three-state Potts model in (3+1) dimensions 

Zheng Weihongt, C J Hamert and J Oitmaa§ 
School of Physics, The University of New South Wales, Sydney. NSW 2052, Ansvalia 

Received 2 June 1994 

Abstract Boll, ‘high-‘ and ‘low-temper.”’ perturbation series are used to locate and 
characterize the tint-order transition in the three-state POUS model in ( 3 ~ 1 )  dimensions on the 
simple-cubic, body-centred cubic and face-centred cubic lattices. Estimates are presented for 
the vacuum energy, ‘latent heat’, magnetization, susceptibility and mass gap at the hansition. 
The results show a remarkable degree of universality b e e n  the different lattices, and a ‘law 
of corresponding states’ is followed very closely. 

1. Introduction 

The model discussed in this work is the threestate Potts model in (3+1) dimensions, the 
quantum Hamiltonian equivalent of the normal Euclidean Potts model in four dimensions. 
As part of a programme of series investigations, we have carried out both ‘high-’ and ‘low- 
temperamre’ expansions for the ground-state energy, the mass gaps, the susceptibility and 
the magnetization for the model. These are analysed in order to study the nature of the 
phase transition. 

The order of the phase transition for this model is not in doubt. Aharony and Pytte 
(1981) performed a renormalization-group analysis of the Potts model in (and near) four 
dimensions, and showed that the transition is first-order for the p-state model if p > 2. 
Our results provide very clear confirmation of this prediction. Having both high- and low- 
temperature expansions at hand, one can extrapolate towards the transition from both sides 
simultaneously, and thus deduce with high accuracy the location of the transition point, and 
the discontinuities that occur there. These calculations are performed for three different 
lattices, namely the simple cubic (sc), the body-centred cubic (BCC) and the face-centred 
cubic (PCC). 

The most interesting feature of the results is a remarkable degee of universality between 
the results for the different lattices. The discontinuity in the magnetization at the transition 
point, for instance, is the same for all three lattices, to within an accuracy of a couple of per- 
cent. When plotted against the reduced ‘temperature’ variable, the magnetizations for all 
three lattices fall on a universal curve; in other words, they obey a ‘law of corresponding 
states’. Other observables such as the mass gaps and susceptibility display a similar 
behaviour, at a somewhat lesser level of accuracy. The same universal behaviour has 
also been observed in the (2+1)-dimensional version of the model (Hamer et a! 1992). 
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Universality is normally expected to be a characteristic of second-order, rather than first- 
order transitions. It is understood via renormalization-group theory on the basis that the 
correlation length near the critical point becomes very large compared to the lattice spacing, 
so that microscopic details of the system become unimportant. As we argued previously 
(Hamer et nl 1992). the same argument can apply at a first-order transition, provided it  is 
only ‘weakly’ first-order, i.e. the correlation length is sufficiently large. One must presume 
that in this case the universality is only approximate. The results are nevertheless very 
striking, in the present case. 

2. Method 

The ‘high-temperature’ (HT) form of the Hamiltonian for this model is 

where i labels the sites on a three-dimensional spatial lattice, (ij) denotes nearest-neighbour 
pairs of sites, and h is the coupling (corresponding to the inverse temperature in the 
Euclidean formulation). If A is very large, then the model can be described by a ‘low- 
temperature’ (LT) form of the Hamiltonian 

(3 

where in both cases Li, Rf are operators at each site which in a basis of eigenstates of L; 
obey the rules: 

L,] l j )  =f,llj) 1, =o, 1, 2 (2.3) 

(2.4) 
so that R: are raising and lowering operators for the spin f , ,  modulo 3. The two versions 
of the Hamiltonian are related by 

1 
A’ H (A) = - H’(A‘) h = ljh’ . (25) 

Using the linked-cluster series-expansion method (Nickel 1980, He et al 1990, Hamer 
etal 1992), both ‘high-temperature’ series in A and ‘low-temperature’ series in A‘ have been 
calculated for the ground-state energy, the mass gap, the magnetization, and the susceptibility 
of the model for sc, BCC and FCC lattices. In these calculations, the fist term in (2.1) and 
(2.2) is taken as the unperturbed Hamiltonian, diagonal in the basis of eigenvectors of L,, 
while the second term then acts as a perturbation, which ‘flips’ the spin at site i for the 
low-temperature expansion, or on neighbouring pairs of sites (ij) for the high-temperature 
expansion. 

To calculate the susceptibility in the high-temperature expansion, we need to add a 
magnetic term 

HM = h C(R+ + R;)/2 
i 

to the Hamiltonian (2.1). and then the susceptibility is defined as 
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where N is the number of lattice sites. 

Hamiltonian (2.2) is taken as 
For the low-temperature expansion, the magnetic field term to be added to the 

Hk =h‘xcos ($ i rL i )  (2.8) 

and the spontaneous magnetization and susceptibility are defined as: 

There are two sectors of excited states in the model, symmetric and antisymmetric, 
respectively, under a spin-parity transformation. The lowest excited state in each sector is a 
single site excitation, in both the HT and LT phases. In the high-temperature series expansion 
the two states have the same eigenvalues FS and FA,  but in the low-temperature expansion 
the two states differ, except in the limit of A’ = 0. 

The relations between the high- and low-temperature observables are, respectively, 
I 

A’ 
(2.10) Eo@) = -EA@’) 

x(A) = A’X’(A’) 

F . ( A )  = -F‘S.A(A‘) 
1 
A’ 

S A  

(2.11) 

(2.12) 

with A = ]/A’. 
Series have been calculated for the ground-state energy per site &IN, the magnetization 

MO, the susceptibility x, and the symmetric and antisymmehic lowest-lying excited state 
eigenvalues F S ,  F A  on the SC, BCC and FCC lattices. The perturbation series for each 
quantity was calculated using the linked-cluster expansion method, reviewed by He et a1 
(1990). For the calculation of the ground-state energy, a list of all connected clusters up to 
a certain order are needed, while for the calculation of the mass gap, both connected and 
disconnected clusters are needed. Table 1 gives the number of clusters generated for each 
lattice. Tables 2 4  give the resulting series coefficients in the ‘high-’ and ‘low-temperature’ 
regimes. 

Table 1. The number of clusters generated for each lattice Here nu is the number of sites 
(vertices), and nb is the number of bonds (edges). 

Ground-state energy Mass gap 
Lattice Expansion Order No of clusters Order No of clusters 

sc HT n b =  10 824 n b =  10 2662 
sc LT n v =  IO 1050 n u = 9  I l l  
BCC HT nb= 10 955 nb= IO 3036 
BCC LT n u =  IO 2647 n u = 9  1208 
FCC HT n b =  I O  2575 n b =  IO 5412 
FCC LT n v = ¶  1215 n u = 7  491 

~ 

3. Series analysis 

The series are analysed in the same way as in our previous paper (Hamer ef al 1992). 
Firstly, we have calculated standard Dlog Pad6 approximants and confluent differential 
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Table 2. 
susceptibility x ,  wd the energy gap F. Coefiicienrs of An me listed. 

High-temperature series in A for the ground-state energy per site Eo/N, the 

n EoIN X F 

sc lattice 
0 -2 f 3 

1 0  : -6 
-7.000000000000 2 -I.000000000000 5.222222 222 222 

3 - I  ,666 666666667~ IO- I 21~22 222 222 222 x IO' -5.833 333 333 333 
4 -8.98148i48i48i~io-~ 7 .9435m12071~10~  -4.617592592593~101 
5 -8.389 9 1 7 6 9 ~ 4 7 3 ~ 1 0 - ~  3.103 3 6 6 ~ 8 3 1 4 ~  io' 2.365226337449 
6 -3.340 577 846 365 -6.03 1 975 308 642 x I O2 
7 -5.6388507a4941 4.815699910857~10~ 9.306210665612~10~ 
8 -2.031 457327592x10' 1.905170Mi724x1@ -l.071616527727x1@ 

10 -1.587 276625348~ IO2 2.988695 129945~  16 -2.31 1414620311 x105 

1.223 70 I 032 701 x Id 

9 -4.573 804 93 I 437 x 10' 7.533 772 27 I 283 x io4 3.15 I 993 522 458 x 10' 

awlanice 
0 -2 f 

16 I O  r 
3 

-a 
2 -1.333 333333333 4333 333333 333 - I  200000000000x10~ 
3 -2.222222222222~10-~ 4.869 135802469~10'  -1 .awooooooooo~io~ 
4 -2.876543209877 - I .5 12 469 135 802 Y IO' 
5 -2.825 1 0 2 a a o m  1.361559967146xlb -3.196159122085~10~ 
6 - 1.946 843087 944x 10' 7.254 552553 547x I O 3  -3.596040656912~ 10) 

2.580 475 537 266x I O2 

7 -3.751 299767989~10~ 3.857533398 IIOXIO~ 6806522608342~103 
8 - 2 . m  58s 763 9 5 9 ~  I@ 2.063 374 574071 x io' - I .  179695 4 6 2 3 ~ ~ ~  IO' 
9 -5  778 013647 7 8 3 ~  id I .  102935928 8 2 9 ~  io6 4.613 535 500834~ io' 

10 -3 008 315976 972x Id 5.91 7 649 543065 x IO6 -4 744 191 435498~ IO6 

3 
-12 

2 -2.000000000000 5.111 Ill Ill l l l x lO1  -2.600000000000x10~ 

4 -9759259259259 1.343 645401 664x IO'  -5.225 OOOOOOOOOx IO' 

6 -l.771601794696~10~ 8.698374416855~10' -1  894166706676~10~ 
7 -9.016458238073~ lo '  7.030865 I38 995x I O s  - 1.226742463 198x IO5 
8 -4.928 367755 668x IO' 5.696701 673 531 Y IO6 -8.45 I015776007x IO' 
9 -2.&10995631321 x 10' 4625 170576728~ IO' -5.863270819922~ IO6 

3 -3.000000000000 I 6aowo00oooo~1o? -9.~oo00ooooooo~1o~ 

5 -3.831 584362 1 4 0 ~ 1 0 ~  1.079220780623~10' -2.9~3771604938~103 

IO - I  707 282 1 4 3 ~ 9 ~  ios 3.761 831 987 I S S X I O *  -3.513639754 349x10' 

approximants (Guttmann 1989) to the series for the derivative of the ground-state energy 
per site, the magnetization, susceptibility, and mass gap, as for a model with a normal 
second-order phase transition. The results are exhibited in table 5 .  From this table, as in 
the case of (Ztl)-dimensions, it can be seen that the apparent second-order critical points 
derived from the magnetization, susceptibility, and mass-gap series are in good agreement 
with one another in every case, so we assume henceforth that they are the same for each 
different quantity. However, the critical points derived from the m and LT series. A! and 
A;, respectively, 'cross over' each other by a small but significant amount, which is several 
times bigger than our expected errors. If the transition were really second-order, the two 
results should agree. This provides the first signal that the system actually undergoes a first- 
order transition, located somewhere in between the two pseudo-critical points A: and A:. 
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Table 3. Low-lemperature series in A' for the ground-srare energy per site E ' f N ,  the sponmeous 

are listed. 
magnetization M;, the susceptibility X I .  and the symmetric energy gap F a , Caeffieients of A' 

n E&/N M:, x' FA 

sc lanice 
0 -6 
I O  

3 -6.172839506 173x10@ 
4 -2.556428482354~ 
5 -4.191434?32586~10-~ 
6 -6.01 I 025 192033 x 
7 -6.948480357121~10~~ 
8 -1.196782824050u10~7 
9 -2.141 254688487~10-~ 

10 -3.687509073 1 7 9 ~ 1 0 - ~  
I 1  -6 .778125W3024~lO-~~ 
12 -1.251673W4394~10-'~ 
13 -2357367M0939x IO-" 
14 -4.635 916254394~ IO-" 
15 -9,225 229574984~ 
16 -1.843 786072 5 3 3 ~ 1 0 - ' ~  
17 -3.725 969289577~10- '~  
18 -7 .609M)6215014~ lO~~~  
I 9  - 1.570704085 807 x 10-l' 
20 -3.271 173741 7 4 7 ~ 1 0 - l ~  
21 -6.853248480703~ IO-" 

BCC 1adcs 
0 -8 
1 0  
2 -8.333333 333 333x IO-' 
3 -3.472222222222~ 
4 -9.782848324515~10-~ 
5 -1.119516093474~10~~ 
6 -1.222321 CQ4630~10-~ 
7 -1.026091 107415~10'~ 
8 -1.289252768835~10-~ 
9 -1.727550934237~ IO+ 

10 -2.209920U93 330x IO-'' 
I I -2993 811 666934~  IO-" 
12 -4.O787725325Mx 
13 -5.651 157507 1 4 3 ~ 1 0 - ' ~  
14 -8.178362485030~ IO-'' 
15 -1.194572363559~ IO-'' 
16 - 1.754 214 61 1 88Ox 
17 -2.606405330562~10-'~ 
18 -3.913469658937~10-~' 
19 -5.937 191 2 4 6 5 5 0 ~ 1 0 ~ ~ '  
20 -9.087021 6 1 0 9 7 1 ~ 1 0 ~ ~ ~  

2 -1.111111 111 I I l x l 0 - l  

I 
0 

-9.259259259259~ 10-3 
-1.028806584362~ 
-1.U0680429435x 
-2.768886856678~ IO-s 
-4.747607446829~ 
-8.21 1 481 846 745 Y 

-3.403 W5 832 857 x IO-' 
-6.921 346442452~ 
-1.445 281 0 9 2 9 3 2 ~ 1 0 - ~  
-3.W751926 492 x 10-I" 
-6.343809 181 4 5 7 ~ 1 0 - l ~  
- 1.364258 348 655 x IO-'' 
-2.947845 552935~ IO-" 
-6.397 1 3 3 8 8 3 4 9 7 ~ 1 0 - ~ ~  
-1.395843 195 1 6 0 ~ 1 0 - ' ~  
-3 060948051 571 x IO- ] (  
-6.748881 9 4 9 7 8 4 ~ 1 0 ' ~ ~  
-1.494572839 l W x  IO-'' 
-3.320263 557 927x 

-1.690780384 1 2 0 ~ 1 0 ' ~  

I 
0 

-5.208333 333 333x10-' 
-4.340277 777 7 7 8 ~  IO-' 
-3.529715 319770~  10-5 

-7.223 797 02d 595 x 10-7 
-5.751 360150542~10-~ 

-9.098477519633~ IO-' 
-1.368521 6859862 IO-' 
-2.032814027219~ 
-3.041 228635 574x 
-4.667813357 1 5 2 ~ 1 0 - ~ ~  
-7.138925397 155~10-~ '  
- 1 . 1 0 7 8 1 8 6 9 2 7 3 9 ~ I O ~ ~ ~  
-I .748 889 351 242x IO-'' 
-2.773 1 0 9 9 7 3 2 W ~ l O ~ ~ '  
-4.417 818701 387x IO-'' 
-7.078 5 2 2 7 9 6 7 U ~ 1 0 - ' ~  
-1.139856248 161 ~ 1 0 - I ~  
-1.845429 149667~ 
-3 .Mx)913323807~10~~~  
-4.895 644 363 149 x 

0 
0 
1.543 209876 543x 
2572016460905~ IO-' 
6.170451 925987~10-~  
1.770986 807 5 6 7 ~ 1 0 - ~  
3.841 457261 0 5 3 ~ 1 0 - ~  
8.834544897968~10-~ 

4.999414633801 XIO-' 
1.179976787 143x10'' 
2.784060734643~ 
6.504 686 032 U8 x 

2.139 141 521 777x10-7 

I528491 161854x10~"' 
3 605 485 935 I9Ox IO- 
8494403226235*10-12 
2.000921 8 9 2 6 1 2 ~ 1 0 - ~ ~  
4.713078687905~10-~~ 
1 . 1 1 0 4 1 2 4 4 2 6 8 6 ~ l O ~ ~ ~  
2.6182887W630x 1O-I' 
6.176 147442054~ 
1.456922692516~10~'~ 

0 
0 
6.510416666667~ IO-' 
8 138020833333x10-' 
1.331 663 123 895x 
2.772702M)8863x 
4.390198857270~10~' 
7.280510513Jwx IO-' 
1.286685 179205~10-~  
2.204496244978~ 
3.811 360802420~ 
6.595267 929 l a x  IOM1' 
1.130888729648X 10-11 
1.949704539693~ 
3.372661671 1 7 5 ~ l O - ~ ~  
5.826464647715~10-~~ 
1.006660631 5 4 4 ~ 1 0 - I ~  
1.739499 1 6 9 2 1 7 ~ 1 0 - ~ ~  
3.006789 181 4 5 8 ~ 1 0 - ~ ~  
5.201 875 312 327 x 
9.003489058979~ 
1.558556739939~10-~' 

18 
-1 
-2.4#4444444444~10-~ 
4358024  69 1 358 x 1 0-' 
-6.092 405 536 850x I 0- I  

5.0897% 796 525 x 
-9.912953 208087~ 
-5 016967814 166x 
-1.002917757 395x 10-5 

1.108362181 7 1 7 ~ 1 0 - ~  
4.780 193020099~ IO-' 

-1.945 229363945~ 
-4.571 257 127331 ~ 1 0 ' ~  
-6.765 939615 858x IO-' 

1.482429783084~ 

-2.721 973067010~ 
-4.935736693 247x IO-" 

6.~71041m456~10-10 

24 
-I 
-1.507936507937~10-~ 
-2.114827412446~lO-~ 

4.178823 183897~10'~ 
-2.032601 379581 x 10-l 
-5.735082941 307x 
-8.575020534 183x 

-4.346591 494645x10-4 

1.592510613274~10-~ 
1.1322105W806~10-~ 

-6.277 793 857 060x IO-"' 
-7.385 1 5 8 6 4 0 1 9 9 ~ l O - ~ ~ ~  
-8.962012572575~10-~~ 

5.640421 374971 x I O - ~ *  
2.588 496912292~10-~~  

-8.67781503627I~10-~~ 
-1.157685975097~10-~~ 

21 -1 399166345334~10-~~ 

Next, we have used a first-order inhomogeneous differential approximant 
(Guttmann 1989) to exhapolate both the high- and low-temperature series to the transi- 
tion point, starting from the high- and low-temperature limits, respectively. 

Figure 1 show the results for the ground-state energy per site. It can be seen that the 
high- and low-temperature extrapolations cross each other at a distinct angle, which is again 
characteristic of a first-order transition. The transition point where the two lines cross is 
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Table 3. Continued. 
E [ , P  XI PS 

m lattice 
0 -12 I 0 36 
1 0  0 0 -1 
2 -8.282 828 282 828x I O-* 
3 -1.543209876543x1V3 -1.286WS230453~10~~ 1.607510288066~lO-~ -8.141W6019794~10-~ 
4 -2.626235516735~10-~ -6.380834814231x10-b 1.599439036078~10-~ -2.538647992728~10-~ 
5 -1.840247467819~10-~ -6.6098015IO974~10~~ 2141947953136~ lO~~  -2.IW808824929~10-~ 
6 -1.422170212807~10-~ -5.685389662316~10~~ 2.27396544S599x1V8 -2,684816122705~10'~ 
7 -8.585 559477659~ -4.864809 10263.5~10-~ 25372M330097x -1.625890790776~ 
8 - 1.961 534 388 598 x I 0-' 
9 -6.045796454435~ 10-l' -4.645 133 168797~10 '~~  3.301 732513878x10-'1 -1.601 681 712471 X I O - ~  

I I -4 455 387247787~ -4.581 547740962~ 4.255 8559W068x -1.5W626S60856x IO-" 
12 -4.054811 081 451 xlO-l4 -4636219335754~10-" 4.811 9264~1938xlO-" -1.861 399925 1 0 8 ~ 1 0 ~ ~ ~  
13 -3,718146662083~10-'~ -4.739792191 5 2 4 ~ 1 0 ~ ~ ~  5.459429241490x10~'5 -1.566561703981xlO-l3 
14 -3.516589 112827~ -4.9126857896!7x IO-'' 6 u 1 4 9 3 0 7 5 8 5 7 6 ~ 1 0 ~ ~ ~  
15 -3.364743644828~10-~~ -5.115218358742~10~~~ 7.043584708835~10-~~ 
16 -3.2SZ676903C47~IO-~~ -J .361749527332~ IV~~  8.004406573077x10~is 
17 -3, I89 W8286 853r -5.657 995 41 8 073n 9.101 883 983 774x 
18 -3.1549363323Uu10~*n -5.957094989293~10-" 1.035049331350~10-'~ 
19 -3.147413798576~10-~' -6.386022364424xlV1' l . I77689557883~lO-~ 

-5.555 555 555 556x 10-l -2.3 1481 4 81481 5x 1.929 01 2345 679x I OF' 

-7. I 55  787 647 254 x lV Io -4.834471 24444040~ IO-'' 2956 861 967 921 x IO-'" 

10 -49~)683287853~io-1*  - 4 . ~ ~ ~ 9 0 ~ ~ 1 ~ 5 ~ 1 0 - l 2  3.734126348431~10-~~ - 1 , 8 ~ 9 7 7 0 3 4 1 ~ ~ 1 0 - ~ ~ ~  

a b l e  4. Low-temperature series in A' for the lhe antisymmetric energy gap FQ. Coefficients 
of A m  me listed for sc, BCC and Fu: lurices. 

n sc BCC Px 

0 18 24 36 
I 1 I 1 
2 -2.222222222222x 10-1 - 1.388 888 888 889x IO-' -7.777777777778~ 
3 
4 
5 
6 
7 
8 
9 
10 
I I  
I2 
13 
14 
15 
16 
17 

-4.012 345 679012 x IO-' 
-2.162052 6 2 5 0 1 6 ~  IO-' 
-6.239 521 114 419x IO-' 
-5  843750745 3 1 3 ~  Io-' 
-2 9 I 5  05661 8 858x IO-s 
-7 IM) I 3 6  853 245 Y I 0-6 
-7 I 3 2  993 9 13 832 x 10-7 

3683 1 0 0 1 1 8 8 4 0 ~ l O - ~  
6 130499801571x lO~" '  

- I  o o i ~ 3 ~ 7 6 a 7 7 ~ ~ 1 0 - ~  
-3 468 909 272 944x IO-' 
-4.458 181 2 3 5 9 6 9 ~ 1 0 - ~ "  

2.205991 6 9 7 8 8 2 ~  I O - "  
8.960752 1207266~ 

-3.619958517938~ IO-]? 

- 1.813 271 6 M 9 3 8 x  
-8.315 833 257 963x 
-6.415565 708 583x 
-I 390500 1 4 6 6 9 1 ~  I0-I 
-3h69510359450x IO@ 
-6,07.2304202888~10-~ 
-6.057897577 1 8 5 ~ 1 0 - ~  
-4578878965521 x 
-8.777 724 3 7 0 8 9 9 ~  IO-"' 
-2.485091 3 9 3 5 3 3 ~  IO-"' 
-4.678438563207.~ 
-5.707898751 330 x IOM1' 
-5.358262683666~ 
-8.320 342229 591 x IO-" 
-2.179543431 Z86x IO-" 

-6.604 938 27 I 605 x IOn3 
-2.869 177551 142x 
-2.765258584095~ IO-s 
-2.647079425 1 2 9 ~ 1 0 - ~  
-2.158 8 5 6 5 6 2 6 2 3 ~  

-2078 7 7 0 0 6 9 9 5 7 ~  IO-y 
-2.007727365 l88x 
-2.029289 101 115x10-" 
-2 .075072396612~ 
-2,123 1 5 7 8 4 5 4 3 8 ~  

-2.101 101 14578Ox10-8 

found to be 

he = 0.2403(2) (sc lattice) 
h, = 0.17655(20)(~cc lattice) 
Ac =0.1162(1) (FCClattice). 

These lie neatly in between the pseudo-critical points A: and Ai listed in table 5. The 
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Table 5. Eslimatcs of singularity parameters for the pseudo second-order phase transitions, 
obtained by Dlog Pad6 approxinwnts and canfluent differential approximts lo the series given 
in tables 2, 3 and 4. 

HT LT 

Quantity 1: Index A.? Index 

sc lanice 
M 
X 
Fs 
FA 

BCC lattice 
M 
X 
FS 
FA 

FCC lattice 
M 
X 
FS 
FA 

0.237(2) 
0.249(3) -0.86(3) 0.2369(6) 
0.250(4) 0.47(3) 0.236(2) 

0.237(1) 

0.1723) 
0.183(3) -0.84(5) 0.173(1) 
0.184(4) 0.486) 0.1730(6) 

0.172( 1) 

0.115(3) 
0.121(1) -0.84(5) 0.114(1) 
0.1207(8) 0.44(3) 0.1143(5) 

0.1 l4(1) 

0.20(4) 
-0.92(1) 

0.47(3) 
0.20(2) 

0.21(3) 
-0.95(5) 

0.47(2) 
0.22(2) 

0.20(3) 
-0.91(5) 

0.44(2) 
0.20(3) 

Figure 1. Graph of the ground stale energy per site 
a,/N against A for ihe sc, BCC and FCC lauices. 
The broken vertical lines mark the expected phase 
trmsitions. 

remaining functions, namely the magnetization, the susceptibility and the m a s  gap (and also 
the derivative of the low-temperature ground-state energy), vary rapidly near the transition 
point because of the nearby pseudo-critical point. It is useful therefore to ‘smooth’ each 
of these functions before making the extrapolations (Liu and Fisher 1989), by calculating 
approximants to the series for ( 1  - A/h$))-”f(A) rather than f ( A )  itself, where A$) and U 
are the pseudo-critical point and critical index, respectively. The errors arise mainly from 
the uncertainties in the critical parameters A,, A$’ and U in each case. 

The results are as follows. 
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Figure 2. Graph of the derivarive of the ground 
state energy per site, ( 1 I N ) a E o p A  against A for 

0 0.1 0.2 the sc, FCC and RC lattices. The broken venical 
tines mark the expected phase transitions. 

- E  

h 

Derivative ofthe ground-state energy. The derivative shows a substantial discontinuity at 
the transition point, as illustrated in figure 2 

1 dEo -0.632(4) h -+ Ac- 

N dh -1.77(2) A --f A d -  

for the sc lattice, or 

1 dEo -0.636(8) h -+ hc- 
N dh -2.21 (4) I 4  A,+ 

for the BCC lattice, or 
1 dEo -0.781(3) A -+ he- 

N dA -3.22(2) A 4 A c + .  

for the FCC lattice. 
Thus we estimate the discontinuity or ‘latent heat’ as 

(3.2) 

(3.3) 

(3.4) 

1.14(2) (sc lattice) 
1.57(4) (BCC lattice) (3.5) 
2.44(2) (FCC lattice). 

Spontaneous magnetization. The spontaneous magnetization is shown in figure 3. At the 
transition point, the values are 

0.48(1) (sc lattice) 
MO = 0.48(2) (BCC lattice) I 0.48( 1) (KC lattice) 

(3.6) 

i.e. about 48% of the maximum possible value for each lattice. The similarity between 
these values for all three lattices is very striking, and immediately suggests at least an 
approximate form of universality. To test this further, we plot the magnetization for all 
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three lattices against a 'reduced' coupling variable h/hc in figure 4. It can be seen that the 
results for all three lattices, while not identical, certainly lie extremely close to one another, 
so that a 'law of corresponding states' seems to apply. 

A' 

: sc lattice 
0.4 ' " ' " I '  " " " ' ' I ' 

0 0.2 0.4 0.8 0.8 1 
hj/Ajo 

Figurt 3. Graph of the spontaneous m3gnetization Mu 
against A' for the sc. EKC and FCC lattices. 

Figurt 4. Graph of the spontaneous magndw.tion Mu 
against the 'reduced' coupling A'fA; for the sc, BCC and 
FCC lattices 

Susceptibilify. 
and 6. Values at the transition point are 

The data for the susceptibilityt are displayed in a similar fashion in figures 5 

7.3(10) h + he- 

h -+ he+ x = [ 5.8(15) 

for the sc lattice, or 

6.5(5) h + &- 
= [ 7(2) A + & +  

(3.7) 

for the BCC lattice, or 

t We hke this opportunity of correcting an error in our previous paper (Hamer et of 1992). where a factor 4 
was misplaced in the high-temperature series for the susceptibility x for the square and triangular lattices, and a 
factor A' was misplaced in the low-tempenlure series. After conecting these mi*s, the susceptibilities at the 
transition point are found to be 

17(4) A-+ Ac- 
= (21(*) A -+ A<+ 

for the square lattice, or 

29(4 A + L -  

= 1 16(4) A + A c +  

for the tiangular lattice. 
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Figure 5. Graph of the susceptibility x againn A for 
the sc, BCC md FCc lattices 

Figure 6. Cnph of lhe susceptibility x against the 
‘reduced’ coupling for lhe SC. BCC and FCC lattices. 

6.3(4) h -+ A,- 
h -+ A,+ = [ 5(2) 

(3.9) 

for the FCC lattice. 

of corresponding states is obeyed, as illustrated in figure 6. 
Again it appears that the behaviour i s  very close to universal, and an approximate law 

Mass gaps. The symmetric and anti-symmetric mass gaps are displayed in figures 7 and 
8. Values at the transition point are 

0.59(5) A -+ h,- 

0.8(2) x -+ A,+ 
F S =  1 

(3.10) 
0.59(5) A + & , -  

F A =  [ 
for the SC lattice, and 

F S =  1 
2.40( 15) h -+ A,+ 

0.63(4) h -+ 1,- 
0.82(8) 1 + A,+ 

F A = (  0.63(4) x+ 1,- 
2.62(12) h + hc+ 

for the BCC lattice, and 

0.65(3) h -+ A,- 
0.8(1) A - + & +  

F S =  [ 

(3.11) 
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(3.12) 

0.65 (3) A + A,- 
2.64(15) A + A,+ 

for the FCC lattice. 

0 0.1 0.2 0.3 
h 

Figure I .  Graph of the symmetric and 
andsymmetric mass gap Fs and F A  against h for 
the sc, BCC and FCC lattices. 

: FCC 

: sc 
6 - - - - -  : BCC 

............. 

4 -  

h 

2 -  - 

Figure 8. Graph of the symmetric and 
antisymmetric mws gap Fs and F A  agdnsl the 
'reduced' coupling l / h .  for the sc, BCC and KC 1.5 

0 " ' " ' ' ~ ' 1 ' ~ ' * I ' * ' '  
0 0.5 1 

h/h, lattices. 

Once more, there is a striking similarity between these values for the different lattices, 
and a law of corresponding states is approximately obeyed (figure 8). The mass gap is 
small but finite at the transition point, as one would expect for a weak first-order transition; 
and our data indicate that the symmetric mass gap is either continuous, or has only a small 
discontinuity from the low-temperature to the high-temperature phase. The antisymmetric 
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mass gap, on the other hand, certainly seems to undergo a substantial discontinuity at the 
phase transition, as seen in figures 7 and 8. 

Is i t  possible that the symmetric mass gap is really continuous, so that the singularity a t  
the transition is a cusp rather than a finite discontinuity? This is precisely what happens in 
the Q-state Potts model in (1 + 1) dimension for Q z 4, where a similar first-order transition 
occurs. Discussions of the finitesize behaviour of the low-lying energy eigenvalues for this 
system were given by Igloi and Solyom (1983) and Hamer (1983), for instance. On the 
other hand, the (1 t 1)D model possesses a self-duality properly which enforces this continuity, 
and is not true of the (3+1)D model; and we certainly know of no general argument why 
continuity should occur. The values (3.10)-(3.12) nevertheless leave this as an intriguing 
conjecture. Similarly, the values (3.7X3.9) raise the possibility that the susceptibility might 
also be continuous, with a cusp singularity at the transition point, although we are aware of 
no good reason why this should be so. 
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